22 research outputs found

    Spectral Analysis of High Order Continuous FEM for Hyperbolic PDEs on Triangular Meshes: Influence of Approximation, Stabilization, and Time-Stepping

    Full text link
    In this work we study various continuous finite element discretization for two dimensional hyperbolic partial differential equations, varying the polynomial space (Lagrangian on equispaced, Lagrangian on quadrature points (Cubature) and Bernstein), the stabilization techniques (streamline-upwind Petrov–Galerkin, continuous interior penalty, orthogonal subscale stabilization) and the time discretization (Runge–Kutta (RK), strong stability preserving RK and deferred correction). This is an extension of the one dimensional study by Michel et al. (J Sci Comput 89(2):31, 2021. https://doi.org/10.1007/s10915-021-01632-7), whose results do not hold in multi-dimensional frameworks. The study ranks these schemes based on efficiency (most of them are mass-matrix free), stability and dispersion error, providing the best CFL and stabilization coefficients. The challenges in two-dimensions are related to the Fourier analysis. Here, we perform it on two types of periodic triangular meshes varying the angle of the advection, and we combine all the results for a general stability analysis. Furthermore, we introduce additional high order viscosity to stabilize the discontinuities, in order to show how to use these methods for tests of practical interest. All the theoretical results are thoroughly validated numerically both on linear and non-linear problems, and error-CPU time curves are provided. Our final conclusions suggest that Cubature elements combined with SSPRK and OSS stabilization is the most promising combination

    Spectral analysis of high order continuous FEM for hyperbolic PDEs on triangular meshes: influence of approximation, stabilization, and time-stepping

    Get PDF
    arXiv admin note: text overlap with arXiv:2103.16158International audienceIn this work we study various continuous finite element discretization for two dimensional hyperbolic partial differential equations, varying the polynomial space (Lagrangian on equispaced, Lagrangian on quadrature points (Cubature) and Bernstein), the stabilization techniques (streamline-upwind Petrov-Galerkin, continuous interior penalty, orthogonal subscale stabilization) and the time discretization (Runge-Kutta (RK), strong stability preserving RK and deferred correction). This is an extension of the one dimensional study by Michel S. et al J. Sci. Comput. (2021), whose results do not hold in multi-dimensional frameworks. The study ranks these schemes based on efficiency (most of them are mass-matrix free), stability and dispersion error, providing the best CFL and stabilization coefficients. The challenges in two-dimensions are related to the Fourier analysis. Here, we perform it on two types of periodic triangular meshes varying the angle of the advection, and we combine all the results for a general stability analysis. Furthermore, we introduce additional high order viscosity to stabilize the discontinuities, in order to show how to use these methods for tests of practical interest. All the theoretical results are thoroughly validated numerically both on linear and non-linear problems, and error-CPU time curves are provided. Our final conclusions suggest that Cubature elements combined with SSPRK and OSS stabilization is the most promising combination

    Spectral Analysis of Continuous FEM for Hyperbolic PDEs: Influence of Approximation, Stabilization, and Time-Stepping

    Get PDF
    International audienceWe study continuous finite element dicretizations for one dimensional hyperbolic partial differential equations. The main contribution of the paper is to provide a fully discrete spectral analysis, which is used to suggest optimal values of the CFL number and of the stabilization parameters involved in different types of stabilization operators. In particular, we analyze the streamline-upwind Petrov-Galerkin (SUPG) stabilization technique, the continuous interior penalty (CIP) stabilization method and the local projection stabilization (LPS). Three different choices for the continuous finite element space are compared: Bernstein polynomials, Lagrangian polynomials on equispaced nodes, and Lagrangian polynomials on Gauss-Lobatto cubature nodes. For the last choice, we only consider inexact quadrature based on the formulas corresponding to the degrees of freedom of the element, which allows to obtain a fully diagonal mass matrix. We also compare different time stepping strategies, namely Runge-Kutta (RK), strong stability preserving RK (SSPRK) and deferred correction time integration methods. The latter allows to alleviate the computational cost as the mass matrix inversion is replaced by the high order correction iterations. To understand the effects of these choices, both time-continuous and fully discrete Fourier analysis are performed. These allow to compare all the different combinations in terms of accuracy and stability, as well as to provide suggestions for optimal values discretization parameters involved. The results are thoroughly verified numerically both on linear and non-linear problems, and error-CPU time curves are provided. Our final conclusions suggest that cubature elements combined with SSPRK and CIP or LPS stabilization are the most promising combinations

    MĂ©thodes Ă©lĂ©ments finis pour la simulation d’écoulements en eaux peu profondes : Analyse, modĂ©lisation et applications Ă  l’hydrodynamique cĂŽtiĂšre

    No full text
    Cette thĂšse se fera dans le cadre des activitĂ©s de l’équipe Inria CARDAMOM en matiĂšre de mĂ©thodes adaptatives pour les Ă©coulements cĂŽtiers. Le travail bĂ©nĂ©ficiera d’interactions avec le BRGM en matiĂšre d’applications rĂ©elles, ainsi que d’échanges avec l’UniversitĂ© de Zurich sur certains aspects mĂ©thodologiques. L’objectif principal de la thĂšse est de dĂ©velopper et comparer des approches d’ordres Ă©levĂ©s pour la simulation d’écoulements en eaux peu profondes. Plus prĂ©cisĂ©ment, l’objectif est d’obtenir des mĂ©thodes d’élĂ©ments finis continues sans matrice de masse, stables et explicites en temps avec des performances comparables Ă  des schĂ©mas de type Galerkin discontinus. La mise en oeuvre se fera dans une bibliothĂšque Ă©lĂ©ments finis orientĂ©e objets utilisĂ©e dans les Ă©quipes INRIA CARDAMOM et CAGIRE, ainsi qu’au BRGM. La validation finale se fera sur des cas rĂ©els d’intĂ©rĂȘt pour la RĂ©gion Nouvelle Aquitaine et en collaboration Ă©troite avec le BRGM OrlĂ©ans avec des Ă©changes avec le centre Rivages Pro-Tech de SUEZ. D’autres Ă©changes sont envisagĂ©s sur certains aspects du travail, en particulier avec l’UniversitĂ© de Zurich, concernant les mĂ©thodes aux rĂ©sidus et l’analyse des mĂ©thodes continues dites stabilisĂ©es. Les principales contributions scientifiques de ce travail seront : L’analyse spectrale multidimensionnelle des mĂ©thodes numĂ©riques Ă©lĂ©ments finis continues stabilisĂ©es.Comparaison et optimisation de celles-ci Ă  diffĂ©rents ordres. La mise en oeuvre d’approches d’ordres Ă©levĂ©s et well-balanced en proximitĂ© de fronts d’inondation. La validation numĂ©rique des mĂ©thodes sur des cas universitaires ainsi que des cas rĂ©els (exemple d’un cas en Nouvelle-Aquitaine).This phd will be carried out as part of the Inria CARDAMOM team’s activities concerning adaptive methods for coastal flows. The work will benefit from the team’s interactions with the BRGM in terms of real applications, as well as exchanges with the University of Zurich on certain methodological aspects. The main objective is to develop and compare high order and adaptative methods for the simulation of Shallow Water flows. More precisely, the objective is to obtain continuous finite element methods without mass matrix, stable and explicit in time with performances comparable to Galerkin discontinuous methods. The implementation will be done in an object-oriented finite element library used by the INRIA CARDAMOM and CAGIRE teams, as well as at BRGM. The final validation will be done on real cases of interest for the RĂ©gion Nouvelle-Aquitaine and in close collaboration with the BRGM OrlĂ©ans with exchanges with the Rivages Pro-Tech center of SUEZ. Further exchanges are envisaged on certain aspects of the work, in particular with the University of Zurich, concerning residual distribution methods and the analysis of stabilized continuous methods. The main scientific contributions of this work will be: Multidimensional spectral analysis of continuous stabilized finite element methods. Comparison and optimization of these at different orders.The implementation of high order and well-balanced approaches near flood fronts. Numerical validation of methods on university cases as well as real cases (example of a case in Nouvelle-Aquitaine)

    Finite Element Methods for Shallow Water Equations : Analysis, Modeling and Applications to Coastal Hydrodynamic

    No full text
    Cette thĂšse se fera dans le cadre des activitĂ©s de l’équipe Inria CARDAMOM en matiĂšre de mĂ©thodes adaptatives pour les Ă©coulements cĂŽtiers. Le travail bĂ©nĂ©ficiera d’interactions avec le BRGM en matiĂšre d’applications rĂ©elles, ainsi que d’échanges avec l’UniversitĂ© de Zurich sur certains aspects mĂ©thodologiques. L’objectif principal de la thĂšse est de dĂ©velopper et comparer des approches d’ordres Ă©levĂ©s pour la simulation d’écoulements en eaux peu profondes. Plus prĂ©cisĂ©ment, l’objectif est d’obtenir des mĂ©thodes d’élĂ©ments finis continues sans matrice de masse, stables et explicites en temps avec des performances comparables Ă  des schĂ©mas de type Galerkin discontinus. La mise en oeuvre se fera dans une bibliothĂšque Ă©lĂ©ments finis orientĂ©e objets utilisĂ©e dans les Ă©quipes INRIA CARDAMOM et CAGIRE, ainsi qu’au BRGM. La validation finale se fera sur des cas rĂ©els d’intĂ©rĂȘt pour la RĂ©gion Nouvelle Aquitaine et en collaboration Ă©troite avec le BRGM OrlĂ©ans avec des Ă©changes avec le centre Rivages Pro-Tech de SUEZ. D’autres Ă©changes sont envisagĂ©s sur certains aspects du travail, en particulier avec l’UniversitĂ© de Zurich, concernant les mĂ©thodes aux rĂ©sidus et l’analyse des mĂ©thodes continues dites stabilisĂ©es. Les principales contributions scientifiques de ce travail seront : L’analyse spectrale multidimensionnelle des mĂ©thodes numĂ©riques Ă©lĂ©ments finis continues stabilisĂ©es.Comparaison et optimisation de celles-ci Ă  diffĂ©rents ordres. La mise en oeuvre d’approches d’ordres Ă©levĂ©s et well-balanced en proximitĂ© de fronts d’inondation. La validation numĂ©rique des mĂ©thodes sur des cas universitaires ainsi que des cas rĂ©els (exemple d’un cas en Nouvelle-Aquitaine).This phd will be carried out as part of the Inria CARDAMOM team’s activities concerning adaptive methods for coastal flows. The work will benefit from the team’s interactions with the BRGM in terms of real applications, as well as exchanges with the University of Zurich on certain methodological aspects. The main objective is to develop and compare high order and adaptative methods for the simulation of Shallow Water flows. More precisely, the objective is to obtain continuous finite element methods without mass matrix, stable and explicit in time with performances comparable to Galerkin discontinuous methods. The implementation will be done in an object-oriented finite element library used by the INRIA CARDAMOM and CAGIRE teams, as well as at BRGM. The final validation will be done on real cases of interest for the RĂ©gion Nouvelle-Aquitaine and in close collaboration with the BRGM OrlĂ©ans with exchanges with the Rivages Pro-Tech center of SUEZ. Further exchanges are envisaged on certain aspects of the work, in particular with the University of Zurich, concerning residual distribution methods and the analysis of stabilized continuous methods. The main scientific contributions of this work will be: Multidimensional spectral analysis of continuous stabilized finite element methods. Comparison and optimization of these at different orders.The implementation of high order and well-balanced approaches near flood fronts. Numerical validation of methods on university cases as well as real cases (example of a case in Nouvelle-Aquitaine)

    MĂ©thodes Ă©lĂ©ments finis pour la simulation d’écoulements en eaux peu profondes : Analyse, modĂ©lisation et applications Ă  l’hydrodynamique cĂŽtiĂšre

    No full text
    This phd will be carried out as part of the Inria CARDAMOM team’s activities concerning adaptive methods for coastal flows. The work will benefit from the team’s interactions with the BRGM in terms of real applications, as well as exchanges with the University of Zurich on certain methodological aspects. The main objective is to develop and compare high order and adaptative methods for the simulation of Shallow Water flows. More precisely, the objective is to obtain continuous finite element methods without mass matrix, stable and explicit in time with performances comparable to Galerkin discontinuous methods. The implementation will be done in an object-oriented finite element library used by the INRIA CARDAMOM and CAGIRE teams, as well as at BRGM. The final validation will be done on real cases of interest for the RĂ©gion Nouvelle-Aquitaine and in close collaboration with the BRGM OrlĂ©ans with exchanges with the Rivages Pro-Tech center of SUEZ. Further exchanges are envisaged on certain aspects of the work, in particular with the University of Zurich, concerning residual distribution methods and the analysis of stabilized continuous methods. The main scientific contributions of this work will be: Multidimensional spectral analysis of continuous stabilized finite element methods. Comparison and optimization of these at different orders.The implementation of high order and well-balanced approaches near flood fronts. Numerical validation of methods on university cases as well as real cases (example of a case in Nouvelle-Aquitaine).Cette thĂšse se fera dans le cadre des activitĂ©s de l’équipe Inria CARDAMOM en matiĂšre de mĂ©thodes adaptatives pour les Ă©coulements cĂŽtiers. Le travail bĂ©nĂ©ficiera d’interactions avec le BRGM en matiĂšre d’applications rĂ©elles, ainsi que d’échanges avec l’UniversitĂ© de Zurich sur certains aspects mĂ©thodologiques. L’objectif principal de la thĂšse est de dĂ©velopper et comparer des approches d’ordres Ă©levĂ©s pour la simulation d’écoulements en eaux peu profondes. Plus prĂ©cisĂ©ment, l’objectif est d’obtenir des mĂ©thodes d’élĂ©ments finis continues sans matrice de masse, stables et explicites en temps avec des performances comparables Ă  des schĂ©mas de type Galerkin discontinus. La mise en oeuvre se fera dans une bibliothĂšque Ă©lĂ©ments finis orientĂ©e objets utilisĂ©e dans les Ă©quipes INRIA CARDAMOM et CAGIRE, ainsi qu’au BRGM. La validation finale se fera sur des cas rĂ©els d’intĂ©rĂȘt pour la RĂ©gion Nouvelle Aquitaine et en collaboration Ă©troite avec le BRGM OrlĂ©ans avec des Ă©changes avec le centre Rivages Pro-Tech de SUEZ. D’autres Ă©changes sont envisagĂ©s sur certains aspects du travail, en particulier avec l’UniversitĂ© de Zurich, concernant les mĂ©thodes aux rĂ©sidus et l’analyse des mĂ©thodes continues dites stabilisĂ©es. Les principales contributions scientifiques de ce travail seront : L’analyse spectrale multidimensionnelle des mĂ©thodes numĂ©riques Ă©lĂ©ments finis continues stabilisĂ©es.Comparaison et optimisation de celles-ci Ă  diffĂ©rents ordres. La mise en oeuvre d’approches d’ordres Ă©levĂ©s et well-balanced en proximitĂ© de fronts d’inondation. La validation numĂ©rique des mĂ©thodes sur des cas universitaires ainsi que des cas rĂ©els (exemple d’un cas en Nouvelle-Aquitaine)

    Finite Element Methods for Shallow Water Equations : Analysis, Modeling and Applications to Coastal Hydrodynamic

    No full text
    Cette thĂšse se fera dans le cadre des activitĂ©s de l’équipe Inria CARDAMOM en matiĂšre de mĂ©thodes adaptatives pour les Ă©coulements cĂŽtiers. Le travail bĂ©nĂ©ficiera d’interactions avec le BRGM en matiĂšre d’applications rĂ©elles, ainsi que d’échanges avec l’UniversitĂ© de Zurich sur certains aspects mĂ©thodologiques. L’objectif principal de la thĂšse est de dĂ©velopper et comparer des approches d’ordres Ă©levĂ©s pour la simulation d’écoulements en eaux peu profondes. Plus prĂ©cisĂ©ment, l’objectif est d’obtenir des mĂ©thodes d’élĂ©ments finis continues sans matrice de masse, stables et explicites en temps avec des performances comparables Ă  des schĂ©mas de type Galerkin discontinus. La mise en oeuvre se fera dans une bibliothĂšque Ă©lĂ©ments finis orientĂ©e objets utilisĂ©e dans les Ă©quipes INRIA CARDAMOM et CAGIRE, ainsi qu’au BRGM. La validation finale se fera sur des cas rĂ©els d’intĂ©rĂȘt pour la RĂ©gion Nouvelle Aquitaine et en collaboration Ă©troite avec le BRGM OrlĂ©ans avec des Ă©changes avec le centre Rivages Pro-Tech de SUEZ. D’autres Ă©changes sont envisagĂ©s sur certains aspects du travail, en particulier avec l’UniversitĂ© de Zurich, concernant les mĂ©thodes aux rĂ©sidus et l’analyse des mĂ©thodes continues dites stabilisĂ©es. Les principales contributions scientifiques de ce travail seront : L’analyse spectrale multidimensionnelle des mĂ©thodes numĂ©riques Ă©lĂ©ments finis continues stabilisĂ©es.Comparaison et optimisation de celles-ci Ă  diffĂ©rents ordres. La mise en oeuvre d’approches d’ordres Ă©levĂ©s et well-balanced en proximitĂ© de fronts d’inondation. La validation numĂ©rique des mĂ©thodes sur des cas universitaires ainsi que des cas rĂ©els (exemple d’un cas en Nouvelle-Aquitaine).This phd will be carried out as part of the Inria CARDAMOM team’s activities concerning adaptive methods for coastal flows. The work will benefit from the team’s interactions with the BRGM in terms of real applications, as well as exchanges with the University of Zurich on certain methodological aspects. The main objective is to develop and compare high order and adaptative methods for the simulation of Shallow Water flows. More precisely, the objective is to obtain continuous finite element methods without mass matrix, stable and explicit in time with performances comparable to Galerkin discontinuous methods. The implementation will be done in an object-oriented finite element library used by the INRIA CARDAMOM and CAGIRE teams, as well as at BRGM. The final validation will be done on real cases of interest for the RĂ©gion Nouvelle-Aquitaine and in close collaboration with the BRGM OrlĂ©ans with exchanges with the Rivages Pro-Tech center of SUEZ. Further exchanges are envisaged on certain aspects of the work, in particular with the University of Zurich, concerning residual distribution methods and the analysis of stabilized continuous methods. The main scientific contributions of this work will be: Multidimensional spectral analysis of continuous stabilized finite element methods. Comparison and optimization of these at different orders.The implementation of high order and well-balanced approaches near flood fronts. Numerical validation of methods on university cases as well as real cases (example of a case in Nouvelle-Aquitaine)

    MĂ©thodes Ă©lĂ©ments finis pour la simulation d’écoulements en eaux peu profondes : Analyse, modĂ©lisation et applications Ă  l’hydrodynamique cĂŽtiĂšre

    No full text
    This phd will be carried out as part of the Inria CARDAMOM team’s activities concerning adaptive methods for coastal flows. The work will benefit from the team’s interactions with the BRGM in terms of real applications, as well as exchanges with the University of Zurich on certain methodological aspects. The main objective is to develop and compare high order and adaptative methods for the simulation of Shallow Water flows. More precisely, the objective is to obtain continuous finite element methods without mass matrix, stable and explicit in time with performances comparable to Galerkin discontinuous methods. The implementation will be done in an object-oriented finite element library used by the INRIA CARDAMOM and CAGIRE teams, as well as at BRGM. The final validation will be done on real cases of interest for the RĂ©gion Nouvelle-Aquitaine and in close collaboration with the BRGM OrlĂ©ans with exchanges with the Rivages Pro-Tech center of SUEZ. Further exchanges are envisaged on certain aspects of the work, in particular with the University of Zurich, concerning residual distribution methods and the analysis of stabilized continuous methods. The main scientific contributions of this work will be: Multidimensional spectral analysis of continuous stabilized finite element methods. Comparison and optimization of these at different orders.The implementation of high order and well-balanced approaches near flood fronts. Numerical validation of methods on university cases as well as real cases (example of a case in Nouvelle-Aquitaine).Cette thĂšse se fera dans le cadre des activitĂ©s de l’équipe Inria CARDAMOM en matiĂšre de mĂ©thodes adaptatives pour les Ă©coulements cĂŽtiers. Le travail bĂ©nĂ©ficiera d’interactions avec le BRGM en matiĂšre d’applications rĂ©elles, ainsi que d’échanges avec l’UniversitĂ© de Zurich sur certains aspects mĂ©thodologiques. L’objectif principal de la thĂšse est de dĂ©velopper et comparer des approches d’ordres Ă©levĂ©s pour la simulation d’écoulements en eaux peu profondes. Plus prĂ©cisĂ©ment, l’objectif est d’obtenir des mĂ©thodes d’élĂ©ments finis continues sans matrice de masse, stables et explicites en temps avec des performances comparables Ă  des schĂ©mas de type Galerkin discontinus. La mise en oeuvre se fera dans une bibliothĂšque Ă©lĂ©ments finis orientĂ©e objets utilisĂ©e dans les Ă©quipes INRIA CARDAMOM et CAGIRE, ainsi qu’au BRGM. La validation finale se fera sur des cas rĂ©els d’intĂ©rĂȘt pour la RĂ©gion Nouvelle Aquitaine et en collaboration Ă©troite avec le BRGM OrlĂ©ans avec des Ă©changes avec le centre Rivages Pro-Tech de SUEZ. D’autres Ă©changes sont envisagĂ©s sur certains aspects du travail, en particulier avec l’UniversitĂ© de Zurich, concernant les mĂ©thodes aux rĂ©sidus et l’analyse des mĂ©thodes continues dites stabilisĂ©es. Les principales contributions scientifiques de ce travail seront : L’analyse spectrale multidimensionnelle des mĂ©thodes numĂ©riques Ă©lĂ©ments finis continues stabilisĂ©es.Comparaison et optimisation de celles-ci Ă  diffĂ©rents ordres. La mise en oeuvre d’approches d’ordres Ă©levĂ©s et well-balanced en proximitĂ© de fronts d’inondation. La validation numĂ©rique des mĂ©thodes sur des cas universitaires ainsi que des cas rĂ©els (exemple d’un cas en Nouvelle-Aquitaine)

    Spectral analysis of continuous FEM for hyperbolic PDEs: Influence of approximation, stabilization, and time-stepping

    Full text link
    We study continuous finite element dicretizations for one dimensional hyperbolic partial differential equations. The main contribution of the paper is to provide a fully discrete spectral analysis, which is used to suggest optimal values of the CFL number and of the stabilization parameters involved in different types of stabilization operators. In particular, we analyze the streamline-upwind Petrov–Galerkin stabilization technique, the continuous interior penalty (CIP) stabilization method and the orthogonal subscale stabilization (OSS). Three different choices for the continuous finite element space are compared: Bernstein polynomials, Lagrangian polynomials on equispaced nodes, and Lagrangian polynomials on Gauss-Lobatto cubature nodes. For the last choice, we only consider inexact quadrature based on the formulas corresponding to the degrees of freedom of the element, which allows to obtain a fully diagonal mass matrix. We also compare different time stepping strategies, namely Runge–Kutta (RK), strong stability preserving RK (SSPRK) and deferred correction time integration methods. The latter allows to alleviate the computational cost as the mass matrix inversion is replaced by the high order correction iterations. To understand the effects of these choices, both time-continuous and fully discrete Fourier analysis are performed. These allow to compare all the different combinations in terms of accuracy and stability, as well as to provide suggestions for optimal values discretization parameters involved. The results are thoroughly verified numerically both on linear and non-linear problems, and error-CPU time curves are provided. Our final conclusions suggest that cubature elements combined with SSPRK and CIP or OSS stabilization are the most promising combinations
    corecore